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Abstract

One of the most boring jobs in the garden is cutting the grass: the automation of this
task can only be seen positively. The goal of this project is to produce an autonomous
lawnmower prototype. The lawnmower should use sensory devices to detect the aspects of
the mowing field and use this information to navigate the area with no user input, mowing
as much of the field as possible while avoiding obstacles and staying on the mowing area.
In this project, we wrote all the code to tailor the software for the specific needs of the
autonomous lawnmower. This choice lengthened the development times and allowed us to
understand every detail. Because of our financial limitations, the most difficult challenges
will be perfecting the project’s localization system and meeting the objectives mentioned
above while minimizing the lawnmower’s costs. This document details our approach to
research, simulation, implement and testing the lawnmower.
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Chapter 1

Introduction

The construction of an automatic lawnmower is a pretty complicated project. It will be
composed of three subsystems: mechanical, electrical, and controls.

• the mechanical system includes the chassis, mower deck and blades, wheels and motors

• the electrical system is divided into two subsections, the control electronics and the
sensors

• controls involve software algorithms loaded onto the control electronics.

Figure 1.1: Tankerino
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This project uses a variety of features to undertake its job. The primary duty necessary
for automation is to track the mower’s location and its environment. Tracking and mapping
are performed using a combination of sensors, wheel shaft encoding and compass bearing
detection. The combination of all this data provides the precise measurements required to
navigate the lawnmower. The robot must also implement an obstacle avoidance system.

In this thesis we are going to focus primarily on the theoretical and practical problems
involved in the development of an autonomous driving car that has to cover an area.

In Chapter 2 we lay the theoretical foundations: we consider the problem to navigate a
robot from a starting point to a destination point as well as find the best strategy to cover
an unknown area. We briefly review some of the most common approach in the literature
and concentrate on the algorithms that identifies the best strategy to complete the given
task.
We describe and analyse the mathematical model used in this thesis that will allow up to
implement the software to drive the lawnmower.

Chapter 3 is dedicated to the design and description of the Hardware used to build
the prototype of an autonomous lawn mower. To calculate and monitor the position of a
robot a lot of sensors and methods are used: in this chapter we will go through each of
these sensors and discuss the strengths and weaknesses associated with them as well as the
Hardware employed: Raspberry PI and Arduino.

Chapter 4 describes the developed software. python is used as a programming lan-
guage for Raspberry Pi, while C and C++ are used with Arduino. All the software was
written without relying on specific robotics libraries. This choice has allowed us to study
and understand all the steps necessary to develop an autonomous-driving robot. Several
implementations have been tested to minimize the errors for many of the obstacles that
occurred during the developing time.

Various experiments are described and analyse in Chapter 5. We performed different
type of experiments: from a simulated lawn mower with different level of realism to experi-
ments done on the field with the build prototype and analyse them to identify strengths and
weaknesses of the implementation and suggest possible improvements and future work.

There were several difficulties encountered during the development of the prototype. One
example was writing a robust code to manage the packets loss between Raspberry Pi and
Arduino. Another example was managing the robot’s movement on uneven ground: some-
times the commands sent to Arduino are not executed perfectly because commercial sensors
are not always accurate.

It is possible to find photos and videos on our website at tankerino.com
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Chapter 2

Coverage Path Planning for Robotics

2.1 Navigation Subsystem

The most elementary problems related with the development of an autonomous car are
fundamentally two:

a) identifies the start point X and the end point Y to complete a task,

b) describe and control the movement of the given robot from X to Y ;

Driving a robot between two points can be a challenge requiring a sophisticated algorithm
and high computing power. However, some applications look for cheaper solutions that might
only partially complete the task. For example, many robot vacuum cleaners use a simple
random algorithm, which consists of an endless loop that in turn performs:

i) drive straight until an obstacle is encountered

ii) turn a random angle, go back to i)

The cleaning quality of such behaviour is not always guaranteed. Still, from a mathe-
matical point of view, if given infinite time, this algorithm will cover the complete cleaning
area as long as the robot can physically reach it [4].

Implementing such an algorithm for a robot vacuum cleaner can be justified by consid-
ering that the area of a house is limited, its development cost is low, and the cleaning task
might be performed regularly, increasing the overall cleaning result.

Modern lawnmowers often used such algorithms.However, those algorithms for our spe-
cific task do not seem optimal:

• a lot of energy is wasted

• the covered area might be pretty big

• random paths on the lawn might be visible

In this thesis, we tried to build a robot that followed objectives to cover the whole area
efficiently.
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2.1.1 Grid Map and Shortes Path

The primary problem that we have to solve is given two points A and B which are the
intermediate point that the robot has to go through, i.e. which is the trajectory it should
follow. At this point it is convenient to split the problem into even smaller pieces: for the
moment we take for granted that we are able to drive a robot through an elementary path,
i.e. a path that involves only straight line and rotations. Section 2.3 we will deal explicitly
for the solution of this particular problem.

So let us consider a given map that we want to explore: for simplicity let’s say that the
map is rectangular. It is natural to build a grid that covers the map and consider the center
of each element of the grid, let say mi,j for the element at position (i, j) in the map.
We can now build an edge from each of the element mi,j to the next one among its neighbors
which can be reached from it: In this way we have build a graph ({mi,j}i,j, {(mi,j → mn,m)}).
It now possible to use one of the many algorithm on graphs to find a path between two
vertexes (mi,j) and driving the robot along this set of elementary paths1.

A variety of algorithms exists to solve the problem [4], for example

• Dijkstra’s algorithm solves the single-source shortest path problem with non-negative
edge weight [7].

• Bellman-Ford algorithm solves the single-source problem if edge weights may be
negative [3].

• A* search algorithmsolves for single-pair shortest path using heuristics to try to
speed up the search [11].

• Floyd–Warshall algorithm solves all pairs shortest paths [9].

• Viterbi algorithm solves the shortest stochastic path problem with an additional
probabilistic weight on each node [24].

Obstacle Avoidance Subsystem

Once the mower is on its own on the fields, and it moves around, it is important to prevent
that it impacts into obstacle, that it does not somersault or does not damage itself:

The subsystem devoted to this task is the Obstacle Avoidance Subsystem: it is designed
to function as a smaller part of the whole Software Architecture and has the purpose of
detecting, through various sensors, obstacles in the vehicles environment that are interpreted
by the software to avoid possible collision or damages.
In the present prototype two types of sensors are used:

• five proximity sensors

1In the case presented all edges will have two classes of distances if all 8 neighbors are allowed or just a
single distance if only the perpendicular neighbors are allowed. It might be consider more complex mapping.
For example let the map be made up of two rooms connected with a long corridor. now the two vertexes at
the end of the corridor can be simply directly connected taking into account that the wight of the edge has
to be the correct one.
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• and one lidar.

By using these two input in conjunction, we provide the data required for the lawnmower to
avoid any hazards while performing its functions.

2.2 Coverage Path Planning

Coverage Path Planning (CPP) is the task of determining a path that passes over all points
of an area or volume of interest while avoiding obstacles. This task is integral to many
robotic applications, such as vacuum cleaning robots, painter robots, autonomous underwa-
ter vehicles creating image mosaics, demining robots, lawn mowers, automated harvesters,
window cleaners and inspection of complex structures, just to name a few. A considerable
body of research has addressed the CPP problem [10].

2.2.1 A Survey on Coverage Path Planning for Robotics

As identified in [10] there are 10 main topics: of these a subset might be relevant for this
thesis. We will briefly present them and point out the strength and the weak aspect in
relation with out task. At the end of this survay we summariese of the algorithm used in
the implementation, which extends some of the concept introduced here as well as some new
ideas.

Classical Exact Cellular Decomposition Methods

Exact cellular decomposition methods break the freespace (i.e., the space free of obstacles)
down into sim-ple, non-overlapping regions called cells. The union of all the cells exactly
fills the free space. These regions, which contain no obstacles, are ”easy” to coverand can
be swept by the robot using simple motions. For instance, each cell could be covered using
a zigzag,”mowing the lawn” pattern [14].
In this approach the map is known in advance: in this thesis we consider however also online
coverage path planning of unknown environment.
Typically, a planner based on exact cellular decomposition generates a coverage path in two
steps.

• First, it decomposes the free space into cells and stores the de-composition as an
adjacency graph.

• Next, it computes an exhaustive walk through the adjacency graph (i.e.,a sequence
that visits each node in the graph exactlyonce).

It is worth noting that the exhaustive walk obtained is a sequence of nodes and not an actual
coverage path. Therefore, an explicit path for covering each cell must be derived using simple
motions as discussed above[10].
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Morse-based Cellular Decomposition

In [2] the authors propose a cell decomposition of the space based on critical points of Morse
functions he Morse-based decomposition has the advantage of handling also non-polygonal
obstacles. By choosing different Morse functions, different cell shapes are obtained [10].
We will not dig into the ditails of the algorithm, but present the intuitive idea behind it.
Let us consider a rectangular 2D map where a set ob obstacle are present and consider a
vertical line which sweeps the space. As this line moves, it will intersect (or stop to intersect)
an object. In this way a number of regions are identified. This construction can be make
rigorous with the help of critical point of function. By changing such functions, different
decompositions are obtained.
An online extention was developed in [1]: To detect the critical points, they use an directional
range sensor to look for points where the surface normals of the obstacles and the sweep
direction are parallel.

Grid-based Methods

Grid-based methods use a representation of the environment decomposed into a collection
of uniform grid cells. This grid representation was first proposedby Moravec and Elfes [15]
to map an indoor environment using a sonar ring mounted on a mobile robot. In this
representation, each grid cell has an associated value stating whether an obstacle is present
or if it is rather free space. The value can be either binary or a probability of finding an
obstacle in the cell. Typically, each grid cell is a square, but also different grid cell shapes
can be used, such as triangles.
By using a grid representations one can only approximate the shape of the target region and
its obstacles, this is also referred to as approximate cellular decompositions [5]. As a result
of this approximate representation, most grid-based methods are resolution-complete, that
is, their completeness depends on the resolution of the grid map.

Example 2.2.1. ε?: An Online Coverage Path Planning Algorithm In [21] a new algorithm
for online coverage path planning of unknown environment is presented: ε?. The algorithm is
built upon the concept of an Exploratory Turing Machine (ETM), which acts as a supervisor
to the autonomous vehicle to guide it with adaptive navigation commands. The ETM
generates a coverage path online using Multiscale Adaptive Potential Surfaces (MAPS),
which are hierarchically structured and dynamically updated based on sensor information.
ε?-algorithm is computationally efficient, guarantees complete coverage, and does not suffer
from the local extrema problem.
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2.3 Vehicle Description and Mathematical Model

The previous discussion needs to be implemented on a real vehicle, which will run some kind
of software to perform a task and control and monitor that everything is precisely followed.
For this goal it is necessary to have an adequate mathematical model.
In particular

• model the vehicle dynamic with a model that is sufficiently representative;

• study the trajectory that such a vehicle follows for a given set of input

• reconstruct the trajectory from some sampling data.

In the following we address these three problem and propose a solution to them.
In order to find a sufficiently representative mathematical model of the system we are

going to consider it necessary to describe it briefly: more elaborate description of the physical
object can be find in Chapter 3. In particular in this section we concentrate to identifies
which are the key variable that allows us to capture the dynamics of the vehicle which are
studied in the next subsection.
The vehicle has four wheels: two independent driving wheels place in the back of the chassis
and can rotate in other directions; two the front wheels that are only there support the
structure with no active role (see Figure 2.1).
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Figure 2.1: Model of the mower: two driving back wheels and two supportive front wheels.
The two driving wheels are independent and can rotate in other directions.

First of all, we will consider a plane-parallel motion solid body: this will make the model
a lot more easy and will not loose too much of generality since the third dimension plays a
minor role.
In particular When the two wheels rotate with the same angular speed, then the vehicle
follows a straight line. If the two wheels have different speed, then the vehicle rotates in
such a way that two wheels describe two concentric circles.

In particular we can conclude that the dynamic of the vehicle is completely determined
once we know the speed of the two wheels.

In order to introduce the equations that govern the dynamic of the car, let start with an
illustrative example.
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Example 2.3.1. Let consider the case in which the right motor is not rotating, while the
left one spins, the car will rotate right with the left wheel describing a circle with center on
the left wheel and radius equal to the distance between the wheels (see Figure 2.2).

In this case is straightforward to write the evolution equation for the trajectory, In
particular, by indicating the position of the center of the rear axis with P = (x, y), and the
direction with θ, during a rotation of the car, the point P .

To identify the center of the circle, it is enough to proceed for half of the width of the
mower (let it be w

2
) perpendicularly to the direction θ, which is equivalent to rotate the

vector (0, w
2
) of θ + π: [

xc
yc

]
=
[
x
y

]
+
w

2
·
[ − sin

(
θ + π

2

)
cos
(
θ + π

2

) ]
.

(xc, yc)

(x, y)

x

y

θ

Figure 2.2: Schema of a simple rotation: the right wheel does not rotate occupies the center
of the circumference that is described by the other wheel as well as the middle point of the
rear axis.

In order to derive the general equations of the dynamics one has to identify the center of
rotation of the vehicle rotate and its angular speed of the. Let us consider the Figure 2.3

The speed of a wheel is tangential to the trajectory and since we are dealing with a
rigid body rotating around a fix point, all elements have the same angular speed: From the
relation between angular speed (ω) and speed of a point distance r from the center, i.e.

ω =
r

r

we derive
ω =

vr

R + l
2

, ω =
vl

R− l
2

and solving for R and ω we have:

R =
l

2

vl + vr
vr − vl

, ω =
vr − vl
l

(2.1)
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Figure 2.3: General Rotation of the vehicle: The speed of the two wheels identifies the center
of rotation

In particular it is possible to identify the center of the rotation (ICC) in the same way as it
was identify in the example:

ICC = [x−R · sin(θ), y +R · cos(θ)]. (2.2)

Forward Kinematics for Differential Drive Vehicle

Consider now the situation when a robot is at position P (t) = (x, y) at time t and let study
what is its next position after a time δt, i.e. P (t+ δt).
From the previous section we might simulate the movement with the following algorithm:

1. translate the ICC to the origin of the coordinate system

2. rotate about the origin by an angular amount ω · t
3. translate back in the ICC

In formula this can be translate into

x(t+ δt)
y(t+ δt)
θ(t+ δt)

 =

cos(ω · t) − sin(ω · t) 0
sin(ω · t) cos(ω · t) 0

0 0 1

 ·
x(t)− ICCx
y(t)− ICCy

θ

+

ICCxICCy
ωδt

 (2.3)

This equation simply describes the motion of a robot rotating a distance R about its ICC
with an angular velocity of ω [23].

Inverse Kinematics of a Mobile Vehicle

In general it is possible to describe the evolution of the position of an object if its dynamic
is known by simply integrating them, i.e.
Let us consider a rigid body, whose angular velocity is given by ω(t) and whose speed is
given by the vector V (t), two functions of time, then
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x(t) = x(0) +

∫ t

0

V (s) cos(θ(s))ds

y(t) = y(0) +

∫ t

0

V (s) sin(θ(s))ds

θ(t) = ω(0) +

∫ t

0

ω(s)ds

and by using the formula derived previously, we have [23]

x(t) = x(0) +
1

2

∫ t

0

[vr(s) + vl(s)] cos(θ(s))ds

y(t) = y(0) +
1

2

∫ t

0

[vr(s) + vl(s)] sin(θ(s))ds

θ(t) = ω(0) +
1

l

∫ t

0

[vr(s)− vl(s)]ds

(2.4)

2.3.1 Trajectory of a Differential Vehicle

The previous paragraphs aimed to study the dynamics of a differential vehicle in order to
try to answer the question about how can a robot be controlled in order to reach a given
configuration: this is a known as inverse kinematics problem [23].

Unfortunately, a differential drive robot imposes what are called non-holonomic con-
straints on establishing its position. For example, the vehicle cannot move laterally along
its axle, but can only perform two type of movements:

(F) follow a straight line

(R) rotate.

Luckily enough only this small set of allowed movements are enough to specifies which
trajectory such a robot should follow to reach point B when its initial position was A.

In geometry such paths are called Dubins path [8].

Dubins path

In geometry, the term Dubins path typically refers to the shortest curve that connects two
points in the two-dimensional Euclidean plane (i.e. x − y plane) with a constraint on the
curvature of the path and with prescribed initial and terminal tangents to the path, and
an assumption that the vehicle traveling the path can only travel forward. If the vehicle
can also travel in reverse, then the path follows the Reeds-Shepp curve.Since the traditional
Dubins path are enough for the porpose of this thesis the more complex Reeds-Shepp curves
are not considered, even though the build robot it able to perfrom such trajectories.
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In 1957, Lester Eli Dubins [8] proved using tools from analysis that any such path will
consist of maximum curvature and/or straight line segments. In other words, the shortest
path will be made by joining circular arcs of maximum curvature and straight lines.

The optimal path type can be described using an analogy with cars of making a right turn
(R), left turn (L) or driving straight (S). An optimal path will always be at least one of the
six types: RSR, RSL, LSR, LSL, RLR, LRL. In particular it always starts with a rotation.
The calculation of such paths follows from geometric considerations.

Construction of Dubins Path

The model we have described above (also known as Dubins car) fits in the theory of Dubins
path. In particular, let consider the case in which a path planner identifies the starting and
ending point for a trajectory along with the direction it should have: we have only to calculate
the corresponding Dubins path and follow them. To keep things simple, only one wheel will
be activated when rotating: in this way, the circle’s radius is half of the length of the rear
axis.
At this point the algorithm is very simple:

1. calculate Dubins path between A = (xA, yA, θA) and B = (xB, yB, θB):

D(A,B) = S1 ◦ S2 ◦ S3,

where the Si are the three different segments that constitute a path.

2. (S1) activate the correct wheel to rotate for a given angle

3. (S1) activate the correct wheel to rotate for a given angle or both to go straight

4. (S1) activate the correct wheel to rotate for a given angle till the final position.

There are different approach to identify the Dubin paths connecting two point. In this
section we give a intuitive geometrical description that might be instructive (See Figure
2.4):

1. draw the two circumferences CA (with centre CA) and CB (with centre CB) tangent to
the starting and end point. The diameter is the distance between left and right wheel
of the vehicle.

2. identify the line τ (or the circumference if it exists) tangent to CA and CB so that the
driving direction is coherent.

3. The segments and arch or circles identified make up the possible Dubins path.

4. Compute the length of each found path and select the shortest one (in the figure the
blue and red arcs and the green line.).
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TA
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Figure 2.4: Geometric construction of a Dubins path between points A and B: First draw
the circumferences tangents to the starting point and to the destination point, then identify
the tangent of the two circumference.

There exists analytic solution for this problem [19], that will outperform a naive geometric
implementation ([25]).

At this point the majority of theoretical and modeling aspect have been described and
developed: the lawn mower needs a software, two wheels and a motor. We can now dirty
our hands by building a functional prototype.
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Chapter 3

Mechanical and Hardware Design

In this chapter, we briefly analyze the sensors and actuators used in the project.

Figure 3.1: This image shows some mower sensors: compass, h-bridge, Arduino, and GPS.

3.1 Techniques and Sensors Used in Mobile Robot Po-

sitioning Systems

The robot uses a combination of methods and sensors to calculate and monitor the position
of the mower. Most mobile robot positioning applications use two techniques, one from each
of the following groups: [6]

• Group 1: Relative Position Measurements (Dead-Reckoning)

– Odometry

• Group 2: Absolute Position Measurements (Reference-Based Systems)

– Magnetic Compasses
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– GPS

– Inertial Measurement Unit (IMU)

This chapter will go through some of these techniques and discuss the strengths and
weaknesses of each method. The automated vehicle will use a combination of GPS, wheel
encoders, magnetic compasses and Lidar (Time-of-Flight Infrared Rangefinder).

3.1.1 Odometry

Odometry is a part of SLAM problem. It estimates the agent/robot trajectory incrementally,
step after step, measurement after measurement.

newstate = oldstate + step measurement

Incremental change can be measured using various sensors. We use wheel encoders.

Figure 3.2: This image shows how to estimate the robot trajectory after an action with
odometry [18].

Odometry provides good short-term accuracy, is relatively inexpensive and usually has
very high sampling rates. The drawback of odometry is the accumulation of errors. This
error becomes more significant as the distance travelled by the mower increases [18].

Non-systematic errors will result from unintended interactions between the surface the
robot is traversing and the wheel. In the case of the autonomous lawnmower, non-systematic
errors will be introduced into the system due to wheel slippages on a wet lawn. Thus, the
equations no longer represent the actual distance travelled since the encoder may not have
the means to filter out these errors. [6]

In the application, messages from Arduino sent at regular intervals provide the informa-
tion necessary to update the position on the map.
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3.1.2 Inertial Measurement Unit (IMU)

The lawnmower uses the Bosh BNO055 to understand the direction where the robot is looking.
This chip incorporates two features:

• An accelerometer is a tool that measures proper acceleration. This sensor is exception-
ally advanced and can internally manage the formulas necessary to recover the data
already calculated.

• A magnetic compass. It is intolerant to cumulative errors but is less accurate.

The Bosh BNO055 using a combination of accelerometers, gyroscopes, and other elec-
trical sensors, inertial measurement units, can measure orientation, acceleration rates, and
rotational changes.

3.2 Obstacle Avoidance Subsystem

As mention in Chapter 2 the obstacle avoidance subsystem is constitute of two set of sensors

• five proximity sensors

• and one lidar.

By using these two input in conjunction, we provide the data required for the lawnmower to
avoid any hazards while performing its functions.

proximity sensor

lidar

obstacle

obstacle

Figure 3.3: Sensor to detect obstacles: proximity sensor and lidar

The primary device used in the obstacles detection and avoidance subsystem is the li-
dar. This sensor will be mounted onto the front of the lawnmower so that it can detect the
obstacles. For use this sensor the the mower has to stop. A stepper motor will then move
one degree at a time allowing the mower to scan through 180 degrees. For each degree,
the lidar sensor will measure the distance.A stepper motor will then move one degree at a
time allowing the mower to scan through 180 degrees. For each degree, the lidar sensor will
measure the distance.
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The proximity sensor will be the secondary device used in the obstacles detection and
avoidance subsystem. These sensors are also mounted on the front of the mower. The ul-
trasonic sensor should be able to detect objects directly in front of the lawnmower up to
a distance of about 6 meters. The ultrasonic distance sensor will provide the microcon-
troller with real-time awareness of obstacles that are present in the path of the lawn mowers
intended route. This will provide an extra layer of protection against collisions with obstruc-
tions, especially with obstacles that for whatever reason the lidar has failed to see.[6]

A useful sensor that could be plugged in could be a a collision sensor. The addition of
a collision sensor adds an extra safety feature to the lawnmower to help prevent the mower
from running over an object in case the obstacle is missed by the proximity sensor.

3.3 Motors

There are two types of electric motors:

• A DC motor (Two Metal DC Geared Motor w / Encoder CQGB37Y001) that moves
the rover. A DC motor is a class of rotary electrical motors that converts direct
current electrical energy into mechanical energy.

• A Stepper motor serves to have an accuracy of a degree to allow the lidar to perform
reasonably accurate measurements.

Both motors run at 12V.

3.3.1 Motor controller

To adjust the speed of the robot is used an H-bridge. An H-bridge is an electronic circuit
that switches the polarity of a voltage applied to a load. These circuits allow DC motors to
run forwards or backwards. In addition, they allow the robot to adjust the speed by setting
an analogue value from 0 to 255 (encode it digitally).
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3.3.2 Stepper motor

A stepper motor is a motor that allows excellent precision. One of the most significant
drawbacks, however, is that it fails to recognize its position. The engine can do x degrees,
but it is useless if it cannot start from a known point.

For this project, the robot has a TB6600 Stepper Motor Driver. The motor uses a
mechanical switch to recognize the initial position. Initially, the motor turns to the right;
when it hits the contact, it stops. Then it rotates 12 degrees and moves to the starting
position. Finally, the scan begins, proceeding one degree at a time and allowing the lidar to
take its measurement.

Figure 3.4: Stepper motor and ultrasonic sensors.

3.4 Mower Chassis

We try two different configurations for the project. The first was with two-wheel drive in
the back. The second was a tank that was bought directly from a Chinese manufacturer.

Wheels This first prototype was built on a wooden surface, but its biggest problem was
the difficulty in maintaining the trajectory on the lawn. Given the two small front wheels,
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every small imperfection made the trajectory deviate a lot. The important weight of the
battery also did not improve the solution.

Tank This second prototype, on the other hand, thanks to the tracks, is much more
able to keep the direction. The roughness of the ground affects the tank too but in a smaller
way. This chassis, however, has less space for the battery which has been reduced in size by
greatly reducing the autonomy. All components have been placed in a plastic box to protect
them and to be easily transported.

3.5 Software subsystem

We can divide the software we are going to write into two parts:

• lower level for a microcontroller

• higher-level for a single-board computer

3.5.1 Microcontroller

Usually, the microcontroller in a robot interfaces with sensors and actuators. There are
various solutions on the market, but the choice fell on Arduino Mega. Almost all the sen-
sors on the market had libraries written for Arduino, which speeded up the software’s writing.

Arduino board has a set of digital and analogue input/output (I/O) pins to work with
the sensors. The boards can communicate with Raspberry Pi with a Universal Serial Bus
(USB). The microcontrollers were programmed using the C and C++ programming languages
([17], [22]).

3.5.2 Single-board computer

Figure 3.5: Raspberry Pi and Arduino
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A single-board computer is a complete computer built on a single circuit board, with a mi-
croprocessor, memory, I/O and all the other features required for a functional computer.
Single-board computers are commonly used as embedded computer controllers [26].

The computational part of this project is quite challenging. For example, the calculation
of the next cell to visit and updating the map requires many calculations. For this reason,
the Raspberry Pi 4 Model B was chosen.

Raspberry Pi has a 1.5 GHz 64-bit quad-core ARM Cortex-A72 processor, onboard
802.11ac Wi-Fi, Bluetooth 5, full gigabit Ethernet, two USB 2.0 ports, two USB 3.0

ports, 4GB of RAM, and a micro HDMI. The Raspberry Pi 4 Model B is powered via a USB-
C port.
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Chapter 4

Software Implementation

Contrary to common belief, the three most important topics in robotics are not Mechanics,
Electronics and Software. Instead, they are Software, Software and Software![4].

In this chapter, we analyze the software used in the project. Almost all the code was
written from scratch. This choice allowed us to understand every aspect that may affect the
development of a robot. No specific frameworks or libraries on robotics were used.

Even if it has dramatically lengthened the development times, this choice allowed us to
tailor the software for driving a lawnmower robot. In addition, we developed a simulator of
the Lawnmower. A simulator gives us the environment to study the best strategy for the
autonomous drive without relying on the real robot.

4.1 System Overview

Two blocks constitute the software system. One part is written for the Arduino microcon-
troller and mainly deals with sensors and motors. The second part runs on Raspberry PI,
which manages all the complexity of localization and planning of objectives.

Figure 4.1
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The main program was developed in python, as it is one of the most used programming
languages on Raspberry pi.

Python is an interpreted high-level general-purpose programming language. Its design
philosophy emphasizes code readability with its use of significant indentation. Its language
constructs as well as its object-oriented approach aim to help programmers write clear, log-
ical code for small and large-scale projects [30].

The program has about 15,000 lines of code in python. This count includes all the files
in the project, including the tests. The classes that need to convert the calculated path into
robot actions have the largest number of lines for both algorithms.

Source file Total lines Source code line Source code lines %
dubins path planner.py 926 738 80%

epsilon star online coverage 839 590 70%
app.py 836 504 60%

carrot chasing.py 842 407 48%
message plotter.py 535 406 76%

tilling 572 384 67%
.... .... ... ...

Total 23047 15599 68%

The Javascript used for the graphical interface and the C used in Arduino are both
2000 lines of code.
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4.2 App.py - Program Overview

The program is launched by running the python3 app.py command. Once the program has
started, it waits for the user to start with a new mission or load an old map.

After the choice, the program enters the actual robot management. Figure 4.3 show the
primary classes used in app.py.

Figure 4.2

The architecture is based on the Observer Pattern [12]. The observer pattern is a software
design pattern in which an object, named the subject, maintains a list of its dependents,
called observers, and notifies them automatically of any state changes, usually by calling
one of their methods. It is mainly used for implementing distributed event handling sys-
tems, in event driven software. In those systems, the subject is usually named a stream of
events or stream source of events, while the observers are called sinks of events. The stream
nomenclature alludes to a physical setup where the observers are physically separated and
have no control over the emitted events from the subject/stream-source. This pattern then
perfectly suits any process where data arrives from some input that is not available to the
CPU at startup, but instead arrives at random (HTTP requests, GPIO data, user input
from keyboard/mouse/..., distributed databases and blockchains, ...). [29]

With this pattern, every class interested in an event, such as an Arduino message, will
subscribe to it. This pattern will ensure that the result code will be more readable. For
example, a one-to-many dependency between objects should be defined without making the
objects tightly coupled. Furthermore, It should be ensured that when one object changes
state, an open-ended number of dependent objects are updated automatically. [29]
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4.3 Configuration

A complex system has several values that can be changed. The program read from a file
applicationConfiguration.xml all the information that is often modified. Among these
choices, we can find:

• the tracking type

• the algorithm to use to explore the map

• the starting point

• algorithm parameters

Editing the XML file is more manageable: the code always remains the same, avoiding
recompiling the whole solution. This choice is handy during the test on the field.

1 <?xml v e r s i on=”1 . 0” encoding=”UTF−8”?>
2 <con f i gu ra t i on>
3

4 <t rack ing type>
5 <s e l e c t e d>1</s e l e c t e d>
6 <opt ions>
7 <opt ion id=”0”>CALCULATED</option>
8 <opt ion id=”1”>NAIVE</option>
9 </opt ions>

10 </t rack ing type>
11

12 <t r a ck ing type samp l i ng ra t e>20</t r a ck ing type samp l i ng ra t e>
13

14 <s imulation mode>
15 <s e l e c t e d>1</s e l e c t e d>
16 <opt ions>
17 <opt ion id=”0”>True</option>
18 <opt ion id=”1”>False</option>
19 </opt ions>
20 </simulation mode>
21

22 . . .
23

24 </con f i gu ra t i on>
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4.4 Socket

The program receives inputs via socket. However, two simulators have been created to test
the algorithms more quickly in addition to the Arduino. It was necessary to develop an
interface to always use the same methods for any occurrence. In figure 4.3, it is possible to
see all the methods of the interface.

1 from abc import ABC, abstractmethod
2 from typing import L i s t
3

4 class I S e r i a l (ABC) :
5

6 def i n i t ( s e l f ) :
7 pass
8

9 @abstractmethod
10 def open connect ion ( s e l f ) :
11 pass
12

13 @abstractmethod
14 def i s s e r i a l a v a i l a b l e ( s e l f ) −> bool :
15 pass
16

17 @abstractmethod
18 def wr i t e ( s e l f , msg : bytes ) :
19 pass
20

21 @abstractmethod
22 def check for new messages ( s e l f ) −> bool :
23 pass
24

25 @abstractmethod
26 def get messages ( s e l f ) −> L i s t :
27 pass

Particular attention has been paid to reassembling the messages that arrive. A message
can arrive broken into several parts. The task of the class MessageChunkHelper is to
recompose the messages arrived in several pieces. The program used a unique character to
mark the end of the message: $. MessageChunkHelper can understand if a message arrived
corrupt or if the rest of the message has yet to be decoded, thanks to this unique character.
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4.5 Messages

Managing messages between Raspberry Pi and Arduino is not an easy task. Messages can
get lost from both Arduino and Raspberry Pi. Messages may also not be handled readily
and accumulate in a queue if Raspberry Pi has to compute other functions.

First implementation

Initially, the program written in python managed all the movements. The distance between
the messages was just 300 milliseconds. The program had to be able to handle all of its
computation in this range.

During these 300 milliseconds, the program had to manage:

• update the map

• check if the trajectory is respected

• send a message if necessary

Raspberry Pi had to handle all the movement. For example, if the robot had to go 2
meters and then turn left, Rasperry Pi started communicating with the message ”go for-
ward”. In the meantime, as the robot advanced, Arduino sents report messages informing
the program about the ticks the encoder had counted. By adding up all the various reports,
the program knew if the two meters had been covered.

Unfortunately, the program could accumulate delays and then delay communication. The
result is a list of messages accumulated on a queue. A robot not responsive to commands
led to choosing another way to implement communication.

In this implementation, each command (forward, left, right, backward) created a sub-
class from MovingHelper.Each sub-class was responsible for understanding if its goal had
been achieved.
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Second implementation

A piece of logic has been moved from Raspberry Pi to Arduino to avoid the problem of a
robot not being responsive. The message in this second implementation has a parameter, for
example, right-50. Once the message has been received, Arduino will autonomously rotate
50 degrees to the right.

For each message received, Arduino sends a NAK or an ACK message if it was able to
decode it. Thus, each message has a unique ID. When Arduino responds to a command,
this ID is reported. Thus, the program can understand if the command was executed.

Figure 4.3

The MessageMenager class handle the communication. There are various scenarios to
control:

• If all goes well, Arduino responds with an ACK, and once the command is completed, it
sends the report. The report has the encoder ticks and the degrees read by the sensor.

• Arduino cannot decode the message. A NAK is sent, and the message is re-sent.

• A message is lost. It can be lost the report, the command or the ack. After waiting
for a timeout to ensure the message is truly lost, the system goes into error mode.
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A crucial method for handling robot motion is can sent(). The program can proceed
with the planned strategy only if:

• the report expected has arrived from Arduino

• the system went into timeout error

The MessageMenager class is also responsible for sending commands to Arduino. When
the message is sent, there is a well-defined time in which the system must react.

1 class MessageManager :
2

3 def i n i t ( s e l f , my socket he lper : SocketHelper , mover status :
LawnMowerStatus ) :

4

5 def can sent ( s e l f , message : ArduinoMessage Output )−>bool :
6

7 def check a rdu ino r ep l ay ( s e l f , messages : L i s t [ ArduinoMessage Output ] ) :
8

9 def s e t s y s t e m i n e r r o r ( s e l f ) :
10

11 def c h e c k f o r r e p o r t ( s e l f , messages : L i s t [ ArduinoMessage Output ] )−>
bool :

12

13 def s en t mes sage to a rdu ino ( s e l f , message : HttpMessage )−>bool :

The system uses the JSON format to make the communication more readable. Unfor-
tunately, this choice adds a couple of milliseconds of delay. However, the most significant
advantage is its great flexibility, which is very useful in this prototyping phase.
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ArduinoMessageInput

The ArduinoMessageInput class models the commands that can be sent to Arduino. Mes-
sages are divided into two types: commands and setup.

• Commands are messages that indicate the robot’s action, such as going forward for
30,000 ticks.

• The setup messages are used to set the values in Arduino. For example, the RESET THETA

message brings the compass back to the value 0.

An example of a message:

1 {
2 ” id ” : ”13” ,
3 ”key” : ”COMMAND” ,
4 ” value ” : ”FORWARD” ,
5 ” parameter ” : ”3500”
6 }

The messages are encoded in JSON. The program then adds the ID field, which repre-
sents a unique number that identifies the message.

To manage the status of the message, the ArduinoMessageInput class has a variable of
type ArduinoMessageInputStatusHelper: message status. The purpose of the message status
variable is to save the states in which the message goes through.

1 class ArduinoMessageInputStatusHelper :
2

3 def i n i t ( s e l f , msg id : int , command : HttpCommand) :
4 s e l f . i d = msg id
5 s e l f . command = command
6 s e l f . i s s e n d : bool = False
7 s e l f . i s a c k a r r i v e d : bool = False
8 s e l f . i s n a k a r r i v e d : bool = False
9 s e l f . i s r e p o r t a r r i v e d : bool = False

10 s e l f . i s t imeout acknowledge : bool = False
11 s e l f . i s t i m e o u t r e p o r t : bool = False
12 s e l f . i s i n e r r o r : bool = False
13 s e l f . i s a r d u i n o s t u c k : bool = False

The life cycle of the message is:

• Send

• ACK, NAK or lost

• Report

• Timeout
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ArduinoMessageOutput

The ArduinoMessageOutput class models the various answers that can come from Arduino.
There are five types of messages that Arduino can send.

• ACK: the message was successfully received and coded.

• NAK: the message was received but could not be coded.

• REPORT: the robot has finished carrying out the requested action. Arduino sends
all the recorded data to the program.

• ALIVE: the robot is ready to execute another command.

• SCAN: the result of the lidar scan. This message contains 180 values.

An example of report message::

1 {
2 ” id ” : 86 ,
3 ” type ” : ”REPORT” ,
4 ” time ” : 25 . 502 ,
5 ” s ” : ”STOP” ,
6 ”eL” : 28306 , ”eR” : 28332 ,
7 ”sL” : 0 , ”sR” : 0 ,
8 ” the ” : 0 , ”mag” : 3 ,
9 ” msg arr ived ” : 13 ,

10 ” r e s ” : t rue ,
11 ” l a t ” : ”180 . 759934849” ,
12 ” lon ” : ”181 . 759934849” ,
13 ”gps” : 182 , ” sa t ” : 21 ,
14 ”s R” : −1 , ” s Fr ” : −1 , ” s F l ” : −1 ,
15 ” s L ” : −1 , ”s D” : −1
16 }

ArduinoMessageOutput is a Data Class. A data class refers to a class that contains only
fields and crude methods for accessing them (getters and setters). These are simply contain-
ers for data used by other classes. These classes don’t contain any additional functionality
and can’t independently operate on the data that they own. [20]
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Messages.json

When the program starts, it creates the message.json file. In this file are saved all the mes-
sages exchanged between the program and the Arduino. This file is handy for understanding
how the system reacted and finding out if there was a communication error.

Figure 4.4: This figure shows how the flow of the messages without error.

The program sends the command with id = 11. Arduino responds with an ACK reporting
the ID. When the command has been executed, Arduino sends the REPORT message with all
the collected data. Finally, Arduino sends the ALIVE command to communicate that it is
available.

Figure 4.5: This figure shows how the flow of the messages with a NAK error.

The program sends the command with id = 154. Arduino responds with a NAK. Arduino
sends a NAK message when it fails to decode the input. Then Arduino sends the REPORT

message with the error field set to true. When the program receives a NAK, resent the
message with the same ID. This time the message is decode correctly and the mission can
go on.
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4.6 Maps

The robot relies on different maps to make its decisions. Maps are matrices (numpy) and
represent reality through a grid.

Figure 4.6: The origin of the axes is the top-left point in the map.

Obstacle Maps

This map is used to represent the environment where the robot acts. Therefore, it is the
most important map. All the other maps derive from it and must be as precise as possible.
Each px of the map represents a square in the real world. The default resolution is 10 cm,
so a px in the map represents a 10x10cm square.

Figure 4.7: Example of an obstacle map. Light grey represents the free ground. The dark
grey represents the still unknown part. Black, on the other hand, represents obstacles.

While each cell in the obstacle map can have one of 255 different values, the underlying
structure that it uses is capable of representing only three. Specifically, each cell in this
structure can be either free, occupied, or unknown. [13]

The program set the threshold to 120. If the cell value is higher than 120, the cell is free.
If the value is lower than 120, the cell is occupied. The closer the value is to zero, the more
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confident that the cell represents an obstacle.

Map Updates When new data comes from the sensors, the program uses the Bayes
formula to update the map. We want to find out the probability of the cell being occupied,
given the new sensor reading s, and also knowing our prior probability of the cell being
occupied. [16] The formula of Conditional Probability

P (H|s) =
P (s|H)P (H)

P (s|H)P (H) + P (s|¬H)P (¬H)
(4.1)

substituting Occupied for H becomes

P (Occupied|s) =
P (s|Occupied)P (Occupied)

P (s|Occupied)P (Occupied) + P (s|Empty)P (Empty)

Notice that the probability P (s|Occupied) and P (s|Empty) are known from the sensor model,
while the other are unconditional probabilities.

Lidar Image

The robot is equipped with a lidar mounted on a motor, capable of scanning the surrounding
terrain. Lidar is a method for determining ranges (variable distance) by targeting an object
with a laser and measuring the time for the reflected light to return to the receiver. It has
terrestrial, airborne, and mobile applications. Lidar is an acronym of light detection and
ranging [28]

Figure 4.8: lidar scan example

Once the scan is complete, the program can create an image to observe the objects found.
The data returning from Arduino are two arrays. The array index indicates the angle we
are referring to. One of the two arrays indicates the distance. The other array indicates the
strength of the measurement. These arrays are also used for updating the obstacle map.
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The program uses Bresenham’s line algorithm to update the map and create an image for
the user interface. Bresenham’s line algorithm is a line drawing algorithm that determines
the points of an n-dimensional raster that should be selected in order to form a close approx-
imation to a straight line between two points. It is commonly used to draw line primitives
in a bitmap image (e.g. on a computer screen), as it uses only integer addition, subtraction
and bit shifting, all of which are very cheap operations in standard computer architectures.
It is an incremental error algorithm. It is one of the earliest algorithms developed in the
field of computer graphics. [27]

Visited Maps

Visited Maps keep track of the path the robot has made. Each time the robot visits a cell,
the cell counter is incremented. Thus, it is easy to see how many times a cell is visited based
on the intensity of the white.

Figure 4.9: A visited map example. The robot started in the upper right corner and arrived
in the upper left corner, avoiding an obstacle.

36



4.7 Tracking System

This class manages the position of the robot on the map. The robot’s position is estimated
on the information it receives from the encoders and the compass. There are currently two
ways to keep track of the position. One is based solely on reading the encoders, the other
based on the compass as well.

For each message that arrives from Arduino with new data, the tracking system class
updates the position.

Managing forward movement is simple, thanks to the Pythagorean theorem. The pro-
gram uses the formula shown in chapter two to mimic the rotation.

1 def t u r n ( s e l f , command sent , theta msg grad ) −> Pos i t i on :
2 # ======================================== #

3 i f command sent == HttpCommand .RIGHT:
4 # ======================================== #

5 theta msg rad = math . f abs (math . rad ians ( theta msg grad ) )
6 c e n t e r o f r o t a t i o n = s e l f . g e t r i g h t c e n t e r o f r o t a t i o n ( )
7 c = s e l f . g e t c u r r e n t p o s i t i o n ( ) . c l one ( ) − c e n t e r o f r o t a t i o n
8 return c . c l one ( )
9 . r o t a t e ( theta msg rad )

10 . t r a n s l a t e ( c e n t e r o f r o t a t i o n )
11 # ======================================== #

12 e l i f command sent == HttpCommand .LEFT:
13 # ======================================== #

14 theta msg rad = math . f abs (math . rad ians ( theta msg grad ) )
15 c e n t e r o f r o t a t i o n = s e l f . g e t l e f t c e n t e r o f r o t a t i o n ( )
16 c = s e l f . g e t c u r r e n t p o s i t i o n ( ) . c l one ( ) − c e n t e r o f r o t a t i o n
17 return c . c l one ( )
18 . r o t a t e (− theta msg rad )
19 . t r a n s l a t e ( c e n t e r o f r o t a t i o n )

The tracking system works in cm. The position on the map instead is expressed in px by
an approximation. Each time the program switches from the position in the map to position
in the tracking system, it performs a conversion based on the resolution.

By adding GPS and an IA camera, the tracking system class can be improved in the
future.
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4.8 Web Server

The program lunch a new thread that runs a web server at startup. This server listens on
port 8080. The server runs on the rover and waits for the user commands. Instead, the client
lunch a simple HTML page(StartProject.html) that allows sending commands and reading
the rover’s status directly in the browser.

Therefore, in order to communicate, the client must be on the same LAN as the server.

109 msg type : HttpMessageType = read pos t message type ( form )
110

111 i f msg type == HttpMessageType .STAR PROJECT MAP:
112 msg id = s e l f . hand le s ta r new pro j ec t by map ( form )
113

114 i f msg type == HttpMessageType .SENDCOMMAND:
115 msg id = s e l f . handle command message ( form )
116

117 i f msg type == HttpMessageType .STAR PROJECT:
118 msg id = s e l f . h a n d l e s t a r n e w p r o j e c t ( form )
119

120 i f msg type == HttpMessageType .OPTIONS:
121 msg id = s e l f . hand l e opt i ons ( form )

The server’s job is to receive commands for:

• create a new map (set size and resolution)

• read the manual commands sent by the client (STOP, GO, LEFT, ...)

• provides the client with real-time information on what the robot is doing.

The messages sent from client to server and the replays are formatted in JSON.

Polling is a technique where the user check for fresh data over a given interval by period-
ically making API requests to a server. The polling interval is set to 2 seconds. The request
for new information is made automatically on the ShowMap.html page. Once the new data
arrives, the interface is updated.
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4.9 Motion Control

Initially, the class MovingHelper in python dealt with managing the movement of the robot.
For example, if the robot moved one meter forward, this class was responsible for sending
the stop signal when the goal was reached.

With the arising of problems related to sending and receiving between Arduino and Rasp-
berry Pi, the control logic was slowly moved to Arduino. Arduino needs to perform three
actions in order to manage the robot movements:

1 - Read the message

Connection is via USB cable and Arduino communicates with the program via a socket.
The first action Arduino does is to check is if there is a message. The program sends the
command as JSON, so if a message is present, Arduino needs to decode it. Only if the
decode works Arduino can execute the command.

Check is if there is a message:

325 // Input from RasperryPi
326 i f ( S e r i a l . a v a i l a b l e ( ) > 0 ) {
327 count s top repor t mes sage = 0 ;
328 bool i sDe s e r i a l i z eJ sonDone = D e s e r i a l i z e J s o n ( ) ;
329 i f ( i sDe s e r i a l i z e J sonDon e == fa l se ) {
330 mowerStatus . ChangeState (ERROR) ;
331 SetMotorSpeed (STOP) ;
332 command result = fa l se ;
333 } else {
334 SetVariablesFromMessage ( ) ;
335 }
336 SentACK( i sDe s e r i a l i z eJ son Done ) ;
337 }

Arduino try to decode the message. In Arduino, it is not recommended to work with
strings, so the input that arrives is copied character by character, as seen in the ”for loop”.
This function returns True if the message is formatted correctly, False if it arrived corrupt.

885 bool D e s e r i a l i z e J s o n ( ) {
886 int av a i l ab l eBy t e s = S e r i a l . a v a i l a b l e ( ) ;
887 i f ( av a i l ab l e By t e s == 0 ) { return fa l se ; }
888 f o r ( int i = 0 ; i < av a i l ab l eBy t e s ; i++) {
889 s e r i a l r a s p e r r y p i i n p u t [ i ] = S e r i a l . read ( ) ;
890 }
891 return d e s e r i a l i z e J s o n ( msgInput , s e r i a l r a s p e r r y p i i n p u t ) ;
892 }
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2 - Set the variables

443 void SetVariablesFromMessage ( ) {
444 m e s s a g e r e c e i v e d i d = j son mes sage input [ ” id ” ] ;
445 const char ∗ key = json mes sage input [ ”key” ] ;
446

447 ArduinoMessageType msg type = ConvertToArduinoMessageType ( key ) ;
448 bool par ok = j son mes sage input . containsKey (” parameter ”) ;
449 bool va lue ok = json mes sage input . containsKey (” value ”) ;
450

451 i f ( msg type == COMMAND) {
452 i f ( par ok && value ok ) {
453 const char ∗ v = json mes sage input [ ” va lue ” ] ;
454 Commands message command = ConvertToCommand( v ) ;
455 i f ( message command == FORWARD | | . . . ) {
456 // . . .
457 }
458 i f ( message command == SCAN) {
459 mowerStatus . ChangeState (STOP) ;
460 i s s c a n n e r m e s s a g e a r r i v e d = true ;
461 }
462 }
463 }
464

465 i f ( msg type == SETUP) {
466 // . . . .
467 }
468 j s on mes sage input . c l e a r ( ) ;
469 }

This function set the variables according to the message that has arrived. The message
can be:

• a command such as turn right by 40

• a setup message
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3 - Execute the commands

This part of the program takes care of running the command:

443

444 // message has been sent
445 i f ( execute command == true ) {
446

447 // s e t new s t a t e
448 i f ( change s ta tus == fa l se ) {
449 SetMotorSpeed ( mowerStatus . GetState ( ) ) ;
450 change s ta tus = true ;
451 }
452

453 // Enter in the ” turn mode”
454 i f ( mowerStatus . GetState ( ) == LEFT | | RIGHT) {
455 ReadCompass ( ) ;
456 int d e s t i n a t i o n = Calcu la teDes t inat ionsTheta ( . . . ) ;
457 MotorWheel motor = GetMotor ( mowerStatus . GetState ( ) ) ;
458 command result = StartTurn ( motor , d e s t i n a t i o n ) ;
459 mowerStatus . ChangeState (STOP) ;
460 motor . SetSpeed ( 0 ) ;
461 execute command = fa l se ;
462 }
463

464 i f ( mowerStatus . GetState ( ) == FORWARD ) {
465 max value encoders = max( abs ( . . . ) , abs ( . . . ) ) ;
466 i f ( max value encoders >= encode r s t ep ) {
467 mowerStatus . ChangeState (STOP) ;
468 LeftMotor . SetSpeed ( 0 ) ;
469 RightMotor . SetSpeed ( 0 ) ;
470 execute command = fa l se ;
471 }
472 }

If the robot has to go on, the program checks that the encoder tick count exceeds the set
threshold. The threshold was set by reading the value from the message. The value of the
encoders is reset at each message and increase each time the motor rotates.

If the robot has to turn instead, the first action performed is calculating the target
angle.Then the robot starts spinning. As it approaches the target, the speed decreases to
reduce the error.
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4.10 Missions

To simplify debugging and to be able to carry out multiple tests, it was decided to save each
test in its own folder. A test is called in this case mission. In the mission folder you can
therefore find:

• the configuration file

• the images of the map

• the images of the scans made with lidar

• the images taken with the camera

• the images of the potential map

• the images of the visited map

• the images of the plan trajectory map

• The log with errors (mission.log)

• The log file with almost all the decisions that the AI has made (moviments.txt)

• A file with all the messages exchanged

Figure 4.10
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4.11 AI

In this thesis two different strategies are tested. An interface was therefore created that
allows you to easily change the main algorithm and thus test both solutions.

1

2 class AIGeneral (ABC) :
3 ”””
4 This class model the gene ra l i n s i d e the Robot ,
5 which r e c e i v e s in fo rmat ion and send out commands
6 ”””
7

8 def i n i t ( s e l f , obstac le map , t rack ing sys t em , mower status ) :
9 s e l f . obstac le map : ObstacleMap = obstac le map

10 s e l f . t r a ck ing sy s t em : TrackingSystem = track ing sys t em
11 s e l f . mower status : LawnMowerStatus = mower status
12 s e l f . i s n e w p l a n t r a j e c t o r y a v a i l a b l e : bool = False
13 s e l f . s t a t u s = MowerStatus . IDLE
14 s e l f . maps : L i s t [ LastMapAvai lab i l i ty ] = [ ]
15 # ....

16

17 def get map ( s e l f , map type : MapType) −> LastMapAvai lab i l i ty :
18 f o r item in s e l f . maps :
19 i f item . get map type ( ) == map type :
20 return item
21 r a i s e Exception (” Sorry , MapType i s not found ”)
22

23 def get next command ( s e l f , l a s t r e p o r t ) −> HttpMessage :
24 r a i s e Exception (” Function to o v e r r i d e ”)

The AI uses all of the information available to choose the following command to execute.
The output of the get next command method is the following command to execute.
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4.11.1 Grid based coverage path planning

The algorithm that deals cover the area the map is divided into three parts.

1- Potential Maps

This map is for helping to plan the next goal. This map is created as a NumPy array matrix.
The idea behind this map is to divide the cells into:

• cells not visited: which have a lower potential.

• cells already visited: which have a higher potential than cells not visited

• obstacles: which have zero potential and are, therefore, not reachable

To allow the map to be explored line by line, the potential is increased as the number of
lines increases. The algorithm then looks for the lowest value and that will be the rover’s
next target.

Figure 4.11

This map is created from the obstacle map. All obstacles are reported. In addition, an
extra border is added around obstacles. This extra edge is added to increase safety.

In order to create trajectories where the number of curves is minimized, an important
step is to divide the potential map as if it were a chessboard.

Map Potential map
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The map of the visited cells can be passed as an argument in the constructor of the
class. The potential of a cell is increased every time the robot visits the cell. The robot is
encouraged to visit still unexposed cells.

2- Plan Trajectory

The robot’s goal is to explore the whole map. The robot starts in the lower-left corner then
tries to reach the lower-right corner. Once the goal is achieved, a new goal is calculated.
The robot will continue to go from right to left.

Figure 4.12

In these constant movements, the robot is encouraged to travel through unexposed cells,
which have the lowest potential. The a-star algorithm is used to calculate the route be-
tween the starting point and the endpoint. To convert the path into robot movements, the
CarrotCasing class was written.

3- Calculation of Trajectory: CarrotCasing

The robot needs about 11 cm to make a curve. We must therefore calculate this space when
we carry out the conversion.

In the image, you can see the points that the robot must reach. It can be seen that the
robot stops 11 cm earlier than the path near a curve. The red dot after the curve indicates
where the robot should be after turning.

Figure 4.13

To avoid deviations due to uneven ground after many tests it was decided to advance
a maximum of 40 cm at a time. After translating the path into robot movements, the
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movements that exceed the 40 cm threshold are divided. The plan trajectory map is made
only for the user to see on the screen the next moves of the robot and see the entire path
towards the next goal.

ε?: An Online Coverage Path Planning Algorithm

One of the implementation used is based on the algorithm ε? [21]. In this section we go
through some of the implementation details and some of the choice made in the selection of
the best path.

Briefly the algorithm is based on the Multiscale Adaptive Potential Surfaces (MAPS)
model, which is a hierarchically data structures, which is dynamically updated based on sen-
sor information . It starts from the construction of a so called ε-tilling Tε on a map M, i.e.
a cover of the map with square cell of side equal to ε with a value indicating if the cell is
visited, empty or contains an obstacle

M⊆
Nε⋃
i=0

U iε := Tε, Uε ∈ {xvisited, xempty, xobstacle}

along with a potential B that is used to give the hint of the trajectory to be followed and that
is dynamically updated with the information about the environment, i.e. if a new obstacle
is discovered by scanning the area in front of the mower: for example B(xvisited) = 0 and
B(xobstacle) < 0.

In the default run, the algorithm compute a ordered sequence of waypoints wp to be
visited: these follow the shape of the potential, i.e.

wb = {w1, ..., wN}, B(wj+1) ≤ B(wj).

In case the list of waypoints is empty, recursively a list of tilling is generated where the
length of the square (i.e. ε) double at every level and the value of every cell is the average
of the corresponding cells in the lower level. At this point a new cell U2n·ε with positive
potential is search. If one is found, let say U , then the mower should move to one of the
empty cell corresponding to U , if no such square exists, the next level is calculated and so
on. In the levels are all consumed, without finding a cell with positive epsilon, the map has
been completly explored (refer to [21] for better and deeper explanation).

The class that implement this algorithm is EpsilonStarOnlineCoverage.

During the initialization the main parameters that have to be specified are the value of ε
(the number of map grid to be merged together), the type of potential (grow/decrease verti-
cally/horizontally) and size of the forbidden area, i.e. cells neighbor of an obstacle that are
also marked as inaccessible (we follow the original paper, assigning B = −2 for the obstacle
and B = −1 for forbidden squares).
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Typically the grid of the Obstacle map maintained during a mission has a finer resolution
then the smallest tilling, so that the first tilling is generated by making a coarser grid: in
this phase if any of the grid cells contains an obstacle the corresponding tilling cell will be
marked as xobstacle, and similarly for visited and forbidden cells.
The second step is to construct the potential: according to the passed parameter iterating
through the columns (or rows) from bottom (or from the top) the value of the potential is
fixed taking into account the nature of the corresponding tilling cell.

Obstacle Map First Level Tilling

ε

ε

Figure 4.14: Initialization of the tiling from the obstacle map

At this point the AI engine is properly initialized and the calculation of a list of waypoints
can be requested.
The search of new waypoint differ from the original paper in small details that we present
here, mostly to avoid small zigzag: this might produce a side effect, i.e. not all squares to
be actually visited.

Calculation of Waypoints

Let’s start at square si,j:

1. identify the empty neighbors of the current square: these can be parametrize allowing
only North, South, East and West or also North-East, North-West etc..
In case no such square exists, then the neighborhood of the neighborhood are con-
sidered, discarding squares that have to got though inaccessible regions. Let call Ni,j
these available squares. If Ni,j is empty alternative strategy are used to escape this
(possible) local minimum.

2. From Ni,j create the set with cells with maximum potential, NB
i,j

3. The next waypoint is selected as the element that in NB
i,j maximize a special select

function typically dependent on the directions of the mower in the different squares.
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4. Add the waypoints to wp:

5. Perform various checks

– check if a scan is needed, i.e. the cells around the last waypoint are empty or
unknown

– check if a shortcut is possible, if yes expand it (see below)

– check the presence of zigzags, if yes take action (see below).

If it is possible to keep going go to 1. otherwise break.

Example 4.11.1. Selection of next waypoint Consider that the neighbors of a squares are
all the 8 squares around it: one of the implementation for the selection of the next waypoint
among candidates with equal potential is as follow: Consider the current direction θi,j and
the direction to reach the next square θk,j, the next waypoint is

θ := arg max
φ∈NB

f(cos(θi,j − φ))

f1(x) =

®
2− x if 0 ≤ x ≤ 1

1 + x otherwise

In this case it is preferred to go straight perpendicular to the current direction instead
45 degrees.

2 13

(a) (b)

Figure 4.15: (a) local search for waypoints: squares 1, 2 and 3 have all the same potential.
(b) possible global strategies

For example in Figure 4.15 supposed the points marked as 1, 2, and 3 have all the same
potential, and the potential grows with the y axis: Using as metric the function f1 the list
of the waypoints will be the red arrow, using a function like f2(x) = x the list of waypoints
will produce the black line with slope of 45 degrees.
Consider the starting point in (b) is the area behind a wall the run parallel to the x axis and
another wall goes straight along the y axis downwards. Using the function f2 will result in
going through the free area diagonally while the function f1 will impose to reach the bottom
of the square and then proceeds normally forwards and backwards.
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Use shortcuts

As mention in the introduction, the grid of the obstacle map is finer then the one in of the
first tilling, which might lead to straight walls not perfectly aligned to the direction of the
grid: this will create in the potential/tilling broken lines. The same is true in case the mower
cross a neighbor cell of the calculated waypoints (due to not perfectly aligned driving angle)
or there is some error in the measurements: in all these cases the irregularity created might
make the trajectory much more complex to follow.
At price to miss to cover some small areas, when a new waypoint is added to wp a backward
check is done to identifies such cases and perform a shortcut. The algorithm is very simple
and straightforward: check the direction of the previous waypoints and count the change of
direction as well as the length of straight line parallel to the current direction, this is enough
to identify such cases (see Figure 4.16):

(a) (b)

δ

Figure 4.16: (a) The trajectory in blue is replace with the one in red. (b) The trajectory
cannot be transformed by a shortcut.

If the length δ is short enough, and if the deviation from a straight line is small enough
(one square in (a) vs. 2 squares in (b)), then the waypoints are merged to produced the
shortcut drawn in red in (a).

Deal with Zigzags

Consider the shape in Figure 4.17
In case no action is taken the shape of the obstacle will be translate across the area while
more and more trajectories are calculated (red line in (a)). This might be not the desired
path, since the insertion of not necessary turns might increase the noise and the errors.
This optimization works only in case of standard potential is used, i.e. vertical or horizontal.
During the calculation of the waypoints Step 5 a possible zigzag needs to be detected.

Detection
Let consider we have just added the waypoint w1 and θw1 6= θw0 then

1. prolong the trajectory from w0 in direction θ0 and check no obstacle will be met in n-
cells, where n is a parameter from the user. If all condition are met, go to 2., otherwise
break.

2. calculate the theoretical potential in this direction, i.e. B(w0+t·θ0). If B(w0) ≥ B(w0)
no real improvement is found, then break
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3. otherwise break the generation of waypoints: in this case we have reached the pink
square in subplot (b).

(a) waypint without zig-zag
detection and correction

(b) possible zig-zag is detected

(c) the new trajectory goes through already
visited cells.

Figure 4.17: Correction of ZigZags: instead of repeating the shape of an obsatcles, the
waypoints try to prefer straight line, even though they go through visited

The next time the waypoints are requested, the algorithm will try to fix it.

Fix zigzag
Let consider we are at position p in square w0:

1. check that the neighbor Nw0 of w0 are not all visited

2. check that the mower is not driving as a salmon, i.e. is not going in the direction of
growing potential.

3. repeat the zigzag detection: during the previous consumption of the strategy the arrival
point might be different from the one calculated in the previous waypoints.

3.a prolong the trajectory from w0 in direction θ0 and check no obstacle will be met
in n-cells, where n is a parameter from the user.

3.b calculate the theoretical potential in this direction, i.e. B0 = maxB(w0 + t · θ0).
If B(w0) ≥ B0 no real improvement is found, then break

4. check that the parallel above and below the current direction do not contains any
obstacle

5. If all the conditions above are met, we temporary overwrite the values in the tiling and
potential with the theoretical one and go on with the normal calculation of waypoints.

We note that the information about visited cells is not lost by overwriting the values
in the tilling, in fact the obstacle map is not modified. The data structure used where the
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Tiling logic is implemented (HierarchicalMultiScaleTiling) is regularly recreated from the
Obstacle map.

Check if a scan is needed
Working with the tilings Tε, the underline obstacle map is only indirect used: each U in
T select the prominent characteristic from the obstacle map grid in the corresponding cells
(OUεj )and use it directly, in particular for the presence of obstacles or to mark a cell as visited.
When we consider if a U is empty or unknown, i.e. if we need to issue a scan command we
need to look directly into the obstacle map, taking into account how the information derived
from a scan are saved into this map.

Update scan information

(a) set the cell empty alng
the direction of the laser

(a) result of a scan in an area
without obstacle

unknown

empty

Figure 4.18: Update known (empty) and unknown cells in the Obstacle Map after a scan:
not all cells are labeled.

When a scan is performed the cells along the bean are marked empty, while the one with
obstacle are marked this way. Let us consider a square U without obstacle: clearly it is
improbable that all cells OUεj are marked empty: so when check for the next waypoint if the
ratio of unknown cells and the empty one exceeds a threshold (in the experiments it is 0.4):
if this is the case, the construction of the waypoints list is interrupted and consequently all
waypoints are consumed, a scan command is going to be requested.

Escape From Local Minima

In case no way-points is found, the algorithm try two different strategy.
First try to detect if it has encountered a cul-the-sack: in this case it tries to go backwards
till a new way point is possible.
In case the the previous solution is unacceptable (i.e. it needs to go backwards for a very
large line, it is not safe, etc.) then (as presented in [21]) higher tillings are created and
examined to identified regions not yet explored. To reach such spots we employed the A?

search algorithm.
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Typically when searching for unexplored cells, more candidate are available: to select one,
these regions are sorted according to the distance needed to reach it and the number of not
visited cells in corresponding first layer. In case less then 3 cells in the first layer are present,
then this position is discarded from the set op possible endpoints. The strategy might also
go through unknown regions, and in these regions a scan is performed before complete the
task, if possible, otherwise a new strategy is calculated.

4.11.2 Calculation of Trajectory: Connect Middle Points

Once the waypoints wp have been identified, the actual trajectory that the mower should
follows is calculated:
This algorithm take as input a list of waypoints wp as well as the current direction of the
mower, θ. Let index the waypoints relative to the current waypoint under consideration: p
is the current position and θ its direction, while wj is the j-the waypoint from w0:

1. calculate the middle point of w1 in real units: pj = (xp1 , yp1)

2. extract the angle that the mower must have when transiting from p to pi, let call it θi

3. get the intersection point q0 where the mower will exit the cell corresponding to p in
direction θ1 and q1 for the next one.

4. Calculate the Dubin paths1

t1 = D((xp, yp, θ) 7→ (xq1 , yq1 , θ1))

and
t2 = D((xp, yp, θ0) 7→ (xq0 , yq0 , θ1)) +D((xq0 , yq0 , θ1) 7→ (xq1 , yq1 , θ1))

and select the shortest trajectory.

5. set p = xq1 and θ = θ1 go to 1. starting from the next waypoint till none is left.

w0

p0

θ0

w1

p1

w2

p2

p

q0 q1

q2

θ0

θ1

q2

Figure 4.19: calculation of trajectory from waypoint using middlepoints: after identifying the
middle points of the waypoints pj, the direction needed to connect two consecutive squares
(θj) and the intersection of the segment connecting the middle points (qj), appropriate dubin
are calculated: the one with smallest length is selected.

1D(A 7→ B) is the Dubin path from A to B.
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When using this algorithm to produce the trajectory it is important that ε is big enough
so that the mower width is smaller then the size of a tilling.

4.12 Arduino

Usually, microcontrollers are used to read data from the sensors and to control the various
actuators. Two mega Arduino are used in this project. The choice to use two Arduino is
dictated by the fact that sonars are sensors that take a long time. While the Arduino is
reading the sonar result, the system is not responsive.

The solution was to move the sonars to an Arduino slave which communicates with the
Arduino master whenever it has updated data.

Master

This Arduino does practically all the work required to be able to command a rover. Among
his tasks, we find:

• Read the commands that come from RasperryPi

• Read the sensor values

• Go forwards and backwards or turn according to the command

• Balance the speed to try to go straight

• Communicate with RasperryPi and send the collected data.

Paragraph 4.9 introduced how Arduino manages movements. This paragraph analyzes
the StartScan() and BalanceSpeed() functions

StartScan()

To scan the area in front of the rover, Arduino uses the Lidar and the stepper motor.

1094 void StartScan ( int ang le )
1095 {
1096 while ( count ang l e < servo max angle ) {
1097 StepperMakeOneDegree (LEFT) ;
1098 i f ( count s t ep != 0 ) {
1099 GetLidarDistance ( ) ;
1100 l i d a r s c a n d i s t a n c e [ count ang l e ] = l i d a r d i s t a n c e ;
1101 l i d a r s c a n s t r e n g t h [ count ang l e ] = l i d a r s t r e n g t h ;
1102 count ang l e++;
1103 count step −−;
1104 } else {
1105 count s t ep = s k i p s t e p f o r e r r o r s c a l e ;
1106 }
1107 }
1108 }
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The motor initially rotates the lidar until the switch. The switch indicates when the mo-
tor reaches a know position. Then, the motor moves about 19 degrees to the initial position.
Then the scan starts. The stepper motor allows making a rotation of 1 degree. For each
degree, Arduino saves the measurement value into an array.

BalanceSpeed()

The robot is not always able to keep the trajectory due to the unevenness of the ground.
The BalanceSpeed() function uses the feedback from the two motor encoders to decrease the
speed of the faster motor. These adjustments are in the order of milliseconds.

Figure 4.20

The first version of this function destroyed the joint between the wheel and the motor.
Unfortunately, a bug in the software that manages mechanical components can be costly.

576 // # Right engine faster

577 i f ( m o t o r r i g h t f a s t e r == 1 ) {
578

579 //# Try to lower its speed

580 i f ( motorRight speed − i n c r ementa l va lue > min speed )
581 {
582 new motorRight speed = ( int ) ( motorRight speed − i n c r ementa l va lue ) ;
583 }
584 else
585 {
586 // # If I am already at max I raise the speed of the other motor.

587 i f ( ( motorLeft speed + inc r ementa l va lue ) < max speed ) {
588 new motorLeft speed = ( int ) ( motorLeft speed + inc r ementa l va lue ) ;
589 }
590 else
591 {
592 new motorLeft speed = max speed ;
593 }
594 . . .
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Slave

This second Arduino is needed to support the Arduino master. This Arduino reads the data
of the fivers sonar and GPS. Once it has collected the data, it sends it to the master Arduino.

The tasks of the second Arduino are simple. The second Arduino was necessary because
the reading from the sonar sensors took a long time and would have slowed down the main
program too much.

576 void loop ( )
577 {
578 i s m e s s a g e t o s e n d = true ;
579

580 //# GPS

581 ResetGPS ( ) ;
582 ReadGPS( ) ;
583

584 i f ( new data GPS ) {
585 GetGPValues ( ) ;
586 }
587

588 //# Sonar

589 ResetSonar ( ) ;
590 ReadSonarDistances ( ) ;
591

592 //# Serial

593 i f ( i s m e s s a g e t o s e n d == true ) {
594 SentReportArduinoMaster ( ) ;
595 i s m e s s a g e t o s e n d = fa l se ;
596 }
597 delay ( 100 ) ;
598 }
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4.13 User Interface

In order to allow the dialogue between the application running in the robot and the user,
two simple web pages have been created. These allow you to start the mission and check its
progress.

New Map

This page offers the user three choices:

• Create a new map

• Load an old map

• Upload a custom map

If you want to create a new map, you can specify both the length and the height. Another
customizable aspect is the resolution, by default set at 10cm = 1px

Figure 4.21: Home page, the user can choose the mission to start.
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Dashboard

This page allows to control the robot and shows all the actions made by the robot. There
are several maps: obstacles map, trajectory map, for the next goal, visited map potential
map

The robot can run manual and automatic. In the UI, the buttons allow driving the robot
manually.

On the page, there is a polling timer set to 1s. When this timer triggers, a request to the
webserver is made. The web server responds with all updated information in a JSON format.
This information contains, for example: the last command sent, plan strategy, update map,
... .

Figure 4.22: Mission summary page: graphs and maps.
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4.14 Mower Simulator

To speed up development times and to be able to debug the code, a robot simulator was
created. The simulator receives the commands and moves the robot virtually on the map.
All sensors are simulated to provide adequate response messages. A fundamental parameter
is the amount of noise present in the data collected by the sensor to be able to obtain suffi-
ciently robust algorithms.

10 class Simulator :
11 def i n i t ( s e l f , a rgs ) :
12 params = Parameters ( )
13 params . dims . encode no i se motor = args . encode no i s e s im
14 params . dims . encode no i s e = args . encode no i s e
15 params . dims . s i gma no i s e = args . pa th no i s e
16 params . dims . e r r o r L i d a r = f loat ( args . l i d a r n o i s e )
17 params . dims . f r e q u e n c y i n v a l i d m e s s a g e s = args .

f r eq ue ncy in va l i d m es s ag e
18 . . .

The logic workflow of the prototype can be found below:
Loop event

class RaspberryPI

app.py

InfiniteMessageQueue MockSerial

class ArduinoMock

InfiniteMessageQueue

loop

lo
o
p

write message

emit: make available

to connected objects
read emitted messages

write message

sensor

read sensor output

read emitted messages

enviroment

send request for sensor and get response

example: obtacle in direction θ from my positiontracking system

get Arduino status and calculate in

real-time the position (x(t), y(t), θ)

Motor

comand motor

* distance obstable: 54 cm
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4.15 Mission Analysis

In order to analyze experiments and simulations we developed different tools to gather and
display the huge amount of information produced during in a convenient form.

4.15.1 Report

Once the mission is over, the report program allows analyzing how the test went. The reports
help to compare the two algorithms developed with the same metrics. To choose the sections
to be printed in the report, the program uses the operating system’s console.

Listing 4.1: The various options available in the report
---Missions Analyse ---

1) Choose the mission. There are 19 missions.

You must choose. But choose wisely

> 19

You have chosen ... wisely

---Missions Analyse Main Menu ---

1) Messages overview [ ]

2) Visited map percentage [x]

9) Select all

10) Save report

11) Exit

Choose what to include in the report

>

The program inserts the mission values into predefined templates. These templates are
displayed or hidden depending on the user’s choices.

150 def SaveReport ( opt ions : L i s t [ int ] , f o l d e r p a t h : str , m i s s i o n i d : int ) :
151 c u r r e n t f o l d e r : str = os . getcwd ( )
152 m i s s i o n f o l d e r = os . path . j o i n ( c u r r e n t f o l d e r , ” mi s s i ons ”)
153 # ...

154 f i l e = open ( t e m p l a t e f i l e )
155 template = f i l e . read ( )
156

157 i f opt ions [ 1 ] == 1 :
158 cou nt ac t i on s : CountActions = CountActions ( f o l d e r p a t h )
159 template = template . r e p l a c e (” {phMsg}” , c ount ac t i on s . g e t t a b l e

( ) )
160 else :
161 template = template . r e p l a c e (” {SectionMessagesOverview }” ,

c s s c o l l a p s e )
162

163 # ....

164

165 # Titles

166 template = template . r e p l a c e (” {ReportMissionID}” , str ( m i s s i o n i d ) )
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In this report example, it is possible to see the salient statistics of the mission:

• sent messages

• received messages

• count of turns

• how many meters the robot has travelled

• ACK and NAK

• ...

Figure 4.23: Report example
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4.15.2 Telemetry

Running the telemetry tools it is possible to display all the reads from the sensors as well as
the requested strategy and the calculated trajectory.

Figure 4.24: Example of the telemetry of an Experiment: (top left) value of the read encoder.
(top right) calculated trajectory and requested strategy. (bottom left) sensor reads. (bottom
right) angles and magnetic reads

This view is useful when analyzing the result of a mission, in particular to find bugs and
errors. For example in the Figure 4.24 we notice that the straight line (orange) going from
the red dot has not been completely performed.
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Chapter 5

Simulation and Experiments

In this chapter we will present some experiments performed: these are of two types:

• Simulation: these runs are useful on one hand to test the system with more control and
on the other to experiment and evaluate different implementation of coverage strategy.

• Experiment on the field : these are the main goal of the thesis: the mower is left alone
to complete its mission.

5.1 Simulations

The simulations can be classified in two different categories:

• Ideal Mower : in these simulations the mower follows exactly the trajectory calculated
by the AI without any imperfection: useful to validate the implemented algorithms.

• Realistic Mock : the messages and responses are generated by the simulator presented
in the Section 4.14.

5.1.1 Ideal Mower

This simulation tests and validate only the AI part of the software. The flow is as follows:

1. Obstacle Map Generation: a map with different obstacle of different shape is generated.
In these simulation no scan is performed since the obstacles are known.

2. Strategy Calculation: examining the map, the AI calculate a strategy.

3. Update Obstacle Map: the strategy is used to marked as visited the cells of the map
crossed by the calculated trajectory. Go to point 2.

In order to evaluate different AI implementation it is convenient to defined a metric, in
our case this is:
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value description
size map total number of cell in the map. This depends on the algorithm
positive number of cell not visited but visitable
negative number of cell inaccessible (i.e. contining obstacles)
visited number of visited cells

length path length of path in cells units
direction changes number of change of direction performed

theoretical best path inferior limit of the shortest possible path

(a) random forest horizontal (75 x 75) (b) random forest vertical (75 x 75)

(c) Bush and wall (120 x 160) (d) geometric garden (120 x 160)

Figure 5.1: Ideal Mower in action: the dotted line is the calculated trajectory, while the
continuous line is the trajectory covered up to the present point in time while running the
simulation.

An important value to take into account is the number of direction change: since the
mower should try to avoid zigzags, it is important to decrease the number of of turns. Here
are reported some experiments done to evaluate the algorithm ε?
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maps (a) (b) (c) (d)
size 75 x 75 75 x 75 120 x 160 120 x 160

visited 4820 4820 16484 12783 (-8)
obstacle 805 805 2716 6409
visitable 4820 4820 16484 12791

length path 4836 4838 16580 13524
direction changes 220 223 548 972

Table 5.1: Results of the experiments to evaluate and improve the algorithm ε?

The results of these experiments are encouraging, in particular the strategy cover almost
the complete keeping the length of the path close to the lower limit.

5.1.2 Realistic Mock

In this section we are going to discuss and present one of the experiments done with the
simulator.

We consider a somewhat complicated environment (Figure 5.2) to take the opportunity
to describe possible improvements that need to be consider and implemented.

The parameters used in the ε? algorithms are as follows:

1. ε = 30 cm

2. potential is horizontal, growing with y

3. tolerance is set to 10 cm, i.e. when the calculated trajectory deviate from the planed
one for more then 10 cm a recalculation of the strategy is forced.

4. the implementation for the calculation of new way-points is WayPointsNoZigZag.

5. A strategy can contain at most 20 consecutive way-points.

The Realistic Mock has the possibility to accelerate the simulation: in this simulation
a time stamp of 0.05 seconds has been used, but the actual time has been 20 time faster,
i.e. if a command in the real mower would take 20 seconds to complete, in the simulated
environment would just take 1 second: although the data volume that the RaspberryPi has
to process in the time unit is much bigger then the real experiment.
This simulation has been performed on a laptop (Lenovo) with two processors Intel(R)

Pentium(R) CPU 3550M @ 2.30GHz, 6 Gigabytes of RAM, 2 Gigabytes of Swap Space run-
ning Linux 5.11.0-40-generic #44 20.04.2-Ubuntu x86 64 GNU/Linux

Take a closer look at Figure 5.2.b) we notice that the trajectory calculated by the Ideal
mower is not optimal: it does not conclude to visit a room before passing to the next one,
but if exiting the door at the middle of the wall (coordinate ca. (100, 175)) it goes down
the narrow corridor and visit the bottom of the map, and only at the end it completes the
big room in the center - the length of the path is much longer then the ideal one (Table 5.2).
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The same difficulties are registered in the simulation with the Mock Mower : the trajec-
tories are almost the same. However we notice that the detected walls are not overlapping
the obstacle map. This is due to the presence of small approximations that in such a long
run add up, and make the simulated trajectory and the one calculated from the simulated
sensors diverge from each other.
To better see this, it is useful to analyze the telemetry of the mission Figure 5.3), where
the two trajectory deviate by a large amount from each other. To solve this Simultaneous
localization and mapping (SLAM) technique should be considered and implemented.

(a) map with the obstacle (75 x 75) (b) Calculation of trajectory with ideal mower

(c) progress of the simulation (d) tilling map for (c)

Figure 5.2: Realistic Mower in action: we notice that shape of the walls is not vertical,
meaning that the simulation and the tracked path are not the same
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Figure 5.3: Telemetry corresponding to the simulation in Figure 5.2: we can notice the
difference of the simulated trajectory and the calculated in the main process.

Another important aspect that we need to underline comes from the comparison of the
metric between the ideal coverage path and the simulated one. In particular the number of
turns expected (502) and the one actually performed (over 1185). Most of the turning are
consequences of the correction of the trajectory, i,e, the trajectory deviates more then 10 cm
from the planed one and the path is recalculated to move the mower closer to the center of
a tilling-cell.

metrics Ideal Mower
size 75 x 75

visited 3567
obstacle 2058
visitable 3567

length path 4029 (+462, 112%)
direction changes 502

Table 5.2: Results of the experiments with ideal mower ε? - map in Figure 5.3

It should also be note the high number of scans performed: in the reality every scan is
an expensive operation (in term of time) and this number should be reduced.
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Duration: 1h Messages sent 6219 Message received 872056
Report 5444 Ack 6219 Nak 0
Count turn 1185 Left 583 Right 602
Count forward 3541 meters: 1192 Count alive 859752
Count backwards 31 meters: 7 Count Stop 772
Count scan 641 Angular correction 46 Report Error 0

Table 5.4: Summary of the report for the Mock Mower simulation

5.2 Experiments on the Field

In this chapter, we will describe how the robot behaves in the field. Initially, we started with
a simple map 5 meters by 3 meters with no obstacles.

Figure 5.4: Robot in the field.

5.2.1 Measures

The first operation carried out was to check that the formulas used in the simulator and the
code have a confirmation also in reality. There are three movements of the tank: go forward,
go back and turn.

To calculate the distance travelled forward or backwards we rely on the encoders. The
variables used to turn are:

• the measurement of the gear wheel connected to the motor
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• the length and height of the track

Wheel Tick

Turn start Turn end

Forward-Backward

To correlate the distance between the cm travelled and the values read by the encoders,
several tests were carried out. The actual value is often different from the value declared by
the manufacturer.

Among the various causes we can find the confirmation of the ground or if the wheel
has lost grip on a particular point. The shape of a tank helps mitigate these problems but
problems can still arise.

The result of the experiments is the following table:
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ms id planned cm measured cm json parameter tick Left tick Right Mean

5 10 10 6550 6804 6793 6798,5
7 10 9,8 6550 6876 6878 6877
11 20 19,5 13100 13461 13443 13452
13 20 19 13100 13450 13450 13450
15 20 18,7 13100 13426 13381 13403,5
17 40 38 26200 26587 26588 26587,5
19 40 37 26200 26485 26477 26481
21 40 36 26200 26572 26571 26571,5
27 50 45,5 32750 33135 33142 33138,5
31 50 47 32750 32914 32906 32910
32 50 46 32750 32914 32906 32910
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Linear regression:
Quadratic Regression

To infer the ticks for centimetre we can use simple linear regression, since the distance
and the number of ticks are linearly dependent.
The calculation leads to

y = 719.09 · x− 183.72, (5.1)

with

Error =

Ã
N∑
i=0

(yi − x̂i)2 = 53.23.

Using a quadratic regression

y = 0.00780244x2 + 718.693x− 180.478 (5.2)
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with

Error =

Ã
N∑
i=0

(yi − x̂i)2 = 13.77.

Notice that the both linear and quadratic regression predict that at 0 centimetre the
number of ticks is negative. Performing more measurement between 0 and 10 cm we obtain
extremely noisy values and for this reason it is necessary to divide the behaviour between
up to 10 cm and beyond this distance.
From these experiments we could conclude that the best fit is the quadratic one. Our ap-
proximation, however, is not perfect, but good enough from a practical point of view, i.e.
the actual run of the mower on the field justifies it.
Furthermore, the value found by this approximation, which correspond to a turning wheel
of diameter 3.9 cm, agree also, in first approximation, with the diameter of the wheel that
moves the tank (3.8 cm).

Turn
When we analyzed the prototype with the wheel, the identification of the center of a

rotation was straightforward, since we block one of the wheel, the center of rotation was in
the middle of the blocked wheel.

To identify the center of rotation of the tank version we fixed a coordinate system and
measure the position of at least one points before and after the turn, in particular we rotate
of 90 degree and measured that the point P = (19, 27.5) has been transformed to the point
Q = (33, 39).

Figure 5.5: Graph for calculating the centre of rotation.
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By using the fact the the mower is a rigid body, we calculate the center of rotation for
the measured points: we found that the center is in the middle (width and length) of the
the tank trunk, which agrees with the expected result.

5.2.2 Maintaining Straight Path and Executing 180° Turn

To test the drive system, the tank first needs some basic tests. Testing the mower’s ability to
maintain a straight path and execute a 180 degree turn is beneficial to prove the functionality
of the drive system. To accomplish this, a testing procedure is provided.

1. At the beginning of the run, measure the absolute position and orientation of the
vehicle

2. Run the vehicle for four meters, in ten steps of 40cm. After 40 cm adjust the trajectory
going a few degrees to the right or left, if necessary

3. Make a 180 degree turns on the spot

4. Return to the starting area, measure the absolute position and orientation of the vehicle

5. Compare the absolute position to the robot’s calculated position, based on odometry

The experiment is running four times. The result is the following graph:

Table 5.5: Experimental results: each circle represents measured position at the end of a
single experiment.

In the graph we can see the differences between the real position of the rover in the
experiment with respect to the planned point.

The most obvious errors are found on the y-axis. This is because even a few degrees of
difference from the desired trajectory lead to some errors in the measurements. On the other
hand, the encoders that are responsible for measuring the horizontal movement behave quite
accurately.

71



5.2.3 Obstacle detection

Another early experiment was recognizing obstacles and then deflecting strategy accordingly.
To recognize obstacles, the robot could use all three types of sensors it has. It mounts:

- ToF (Time of Flight) LiDAR
- five ultrasonic sonar
- camera

The lidar is very accurate in measurements and has an action radius of about 12m and.
In the first tests carried out, it is used alone to test the pros and cons of this technology. It
is mounted at about 20 cm height.

Setup

A wooden panel is placed at 160 cm, which simulates the obstacle to be overcome. The
following photo is taken by the camera mounted on the robot.

Figure 5.6: Obstacle to overcome

The first operation that is performed is the scan of the area to discover any obstacles.
Once the scan has been performed, the map is updated with the new data. An image is
produced to show the result of the measurements is possible.

Figure 5.7: This figure shows the trajectory with an obstacle inside the field.
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The panel can be clearly recognized in the image, the scanner works pretty well. From
this image, it can be seen that the sensor also introduces noise. There are several imaginary
points. They do not exist in reality but they are classified as objects. There are several
techniques to overcome this problem and will be implemented as the project progresses.

Figure 5.8: This image shows the lidar scan. It is possible to recognize the obstacle in front
of the robot.

As we saw in chapter 4 in detail the formula updates the map with the scan results. Once
this operation has been completed, it is possible to create a strategy to reach the next goal.
In this test, the rover is going from the lower-left corner to the lower right corner.

As we saw in chapter 4, the A-star algorithm is used to find the way to the goal. Map
creation is explained in detail in Chapter 3.

As can be seen from figure 5.5, unreachable space is added around obstacles. This
operation allows you to add a fixed safe distance from the trajectory to the obstacles. The
robot’s path can only go through free cells.

Figure 5.9: In this image, it is possible to see an extra space around the obstacle.
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5.2.4 Go around

Another experiment is exploring the map and checking that the commands are executed
correctly.Initially, the map will be free of obstacles so it will be easier to follow the robot’s
movements.

The robot starts from the 100x100 (cm) position. The origin of the axes is the top left.
Once the trajectory has been calculated, the list of commands is displayed in the graphic
interface. The list of commands allows you to check in real-time if the strategy is executed.

Listing 5.1: Example of the planned robot movements

STRATEGY 1 −−− count s tep 8
−> go [FORWARD ] f o r 40 cm − wished compass angle = 0
−> go [FORWARD ] f o r 18 cm − wished compass angle = 0
−> turn [LEFT ] f o r 90 deg − wished compass angle = 270
−> go [FORWARD ] f o r 0 cm − wished compass angle = 270
−> go [RIGHT ] f o r 90 deg − wished compass angle = 0
−> go [BACKWARD] f o r 4 cm − wished compass angle = 0
−> go [RIGHT ] f o r 90 deg − wished compass angle = 90
−> go [BACKWARD] f o r 10 cm − wished compass angle = 90

Once the robot has reached the goal in the upper right corner a new strategy must be
calculated.

Figure 5.10: Position of the robot after the first turn.

The new strategy includes a 180-degree rotation. The goal is placed about 20 cm away
from the starting position. In this experiment, the robot continues to make these back and
forth movements for about 5 minutes.

Once the robot has been stopped, the result of the cells visited is in figure 5.8. The
black represents the points not seen, the white colour the points visited. If a cell has a more
intense colour it means that the cell has been visited several times.
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Figure 5.11: Cells visited by the mower

Once the robot was stopped, we were also able to detect its real position. The actual
position from where the robot thought it was differed by about 5cm on the x-axis while it
differed by 40cm on the y-axis. More similar experiments were performed but with similar
results. This behaviour is not acceptable and therefore some SLAM algorithm should be
implemented.

5.2.5 Comparison of implemented AI-Algorithms

This paragraph compares the result of the two developed algorithms that drive the mower.
The parameters taken into consideration will be those elaborated by the report. The exper-
iments to be carried out will be two. The first experiment is carried out on a completely
blank map. The second experiment is carried out on a map with an obstacle in the middle.
The map will always be 5x3 meters in size. In these experiments, both the simulator and
the robot will be tested for a total of eight reports:

Report name Mode Map type Algorithm
1 simulator blank map grid based coverage path planning
2 simulator blank map e-star
3 simulator map with obstacle grid based coverage path planning
4 simulator map with obstacle e-star
5 mower blank map grid based coverage path planning
6 mower blank map e-star
7 mower map with obstacle grid based coverage path planning
8 mower map with obstacle e-star

The reports are enclosed in the thesis in the homonymous chapter.

The two algorithms developed are very different from each other. E-star is much more
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innovative when it comes to handling complicated map situations. Its purpose is to visit the
map as quickly as possible by optimizing the route. On the other hand, the ”Grid-based
coverage path planning” algorithm is much simpler as it tries to go from left to right in the
map until it is completely covered.

Figure 5.12: The two images compare the two algorithms in the obstacle map in the simu-
lator.

In the simulations, both algorithms do their job well. They manage to cover the map
entirely and avoid obstacles.

The problem arises when the noise, present in the real world, is introduced into the
simulator. As a result, the commands are not always executed perfectly. For example, a
wheel can slip, or the trajectory can be slightly incorrect from uneven terrain.

Figure 5.13: In this image, it is possible to see how the noise affects the trajectory.
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Chapter 6

Conclusions

The goal of this project is to produce an autonomous lawnmower prototype. The lawnmower
should use sensory devices to detect the aspects of the mowing field and use this information
to navigate the area with no user input, mowing as much of the field as possible while avoid-
ing obstacles and staying on the mowing area. The objective of the thesis is very ambitious;
all commercial lawnmowers use the perimeter wire.

Figure 6.1: Tankerino

The project goals were not fully achieved. Nevertheless, the final result is remarkable.
The mower can perform up to 20 minutes an optimal way. During those 20 minutes, the
robot visited 30% of the total area without going out of the edges or hitting any obstacle.
But then the sum of many minor errors affects the robot’s location. After about 20 minutes
and up to about 30 minutes, it is possible to see some localisation errors, which could still
be considered acceptable. After approximately 30 minutes, the robot begins to exit the test
area. This problem, well known in the literature, can be avoided by implementing SLAM
techniques. The cheap and not always accurate sensors increase the problem of localization.

Writing all the code forces us to deal with many obstacles. For example, there were
both software problems and hardware difficulties. Building a robot framework was not easy;
real-time applications are usually complicated.
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Therefore, this choice has significantly lengthened development times. Using ROS (The
Robot Operating System) would undoubtedly have decreased development and hidden most
of the complex.

Our framework:

• it consists of a number of customizable interfaces that can be switch at will via simple
configuration parameters: we can for example change the implementation of the mes-
sage type used to communicate between the microcontrollers and the main process,
change the type of vehicle used, by just changing the tracking system that consumes
the incoming data, or the generator of the strategy as well as the translation between
the graph representing the high level path at the grid level of the map to the actual
trajectory or succession of commands to be sent to the robot.

• it contains two simulators to debug and experiment with different scales of realism.

• It is easily usable with its UI and produces readable reports to analyse statistics and
telemetry.

• The design is kept simple, but it is easily extendable to include new features, such as
processing data from the camera.

• working prototype.

Having built a fairly reliable framework could now increase the speed of development.

The future works to be implemented are using a SLAM algorithm and moving some part
of the logic in Arduino to speed up the robot. Another way forward to help the robot locate
it could be the implementation of DenseDepth algorithms.

Figure 6.2: Result of the image with a Dense Depth algorithm taken by the robot camera.
The program can detect the obstacle by its different colours.
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Chapter 7

Budget and Finance Discussion

This project does not have a sponsor, so the cost is of great concern. All the sensors used
are commercial and easy to retrieve.

The highest cost was for the chassis. Analyzing better the price 85 € are for the tank.
The remaining 115 € are between taxes and shipping costs. The second most expensive
item is the Raspberry Pi. It is the robot’s heart and allows you to manage everything with
sufficient power. All other components are pretty inexpensive.

The final price could be in line with commercial lawnmowers that have a price range
ranging from € 1000 to € 2500€. The table with the main components used is attached.

Name Pz Price€
Chassy 1 200€

Raspberry Pi 4 1 95€
Motor w/Encoder 2 27€

Stepper Motor 1 22€
Lidar 1 45€

Ultrasonic Sensor 5 11€
Battery 1 12€

Rele 1 9€
Mini Switch 1 7€

Webcam 1 15€
BNO055 1 28€

Arduino Mega 2 16€
Breadboard Kit 2 15€

H-bridge 1 27€
Total - 556€
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Chapter 8

Reports

This chapter includes the reports of the eight tests carried out. Each report is a pdf file that
contains the principal information elaborate after the mission end.

The first four reports are performed using the simulator. The next four are the field trials
with the robot. The reports help us compare the two algorithms and understand how they
behave in the two tested situations.

Both algorithms have excellent behaviour in the simulator test, exploring about 80% of
the area. Even in the presence of an obstacle, the two algorithms perform well.

The reports map immediately helps us to detect two differences:

• ε? covers the edge. The grid-based algorithm instead builds a safety edge on the
perimeter.

• The grid-based algorithm is less cautious near obstacles.

The user can easily modify the safe distance from the map edges and the obstacles editing
the XML. For these simulations, both were set to 20cm.

The robot took about 30 minutes to explore half of the map in field tests. As written
several times, the noise coming from the sensors is one of the biggest problems faced.

In the first field test, the noise from the lidar made the program misclassifying some
areas. As a result, the robot changes its trajectory because of those fake obstacles.

Some messages are not decoded in the field test. This problem also lengthens the time
it takes to complete the mission.
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Gridbase - empty map - simulation
Messages overview

Report 362 Ack 374 Nak 0

Count forward 254 meters: 98 Count alive 393

Count scan 12 Angular correction 29 Report Error 0

Maps overview

Tankerino report

81



Explore map percentage

id time unknown explored obstacle not set percentage

6 00:00:02 15631 21869 0 0 58

21 00:00:16 10173 27327 0 0 72

30 00:00:26 3863 33637 0 0 89

372 00:04:43 742 36758 0 0 98
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Visited map percentage

ID Time visited not visited obstacle percentage

10 00:00:27 4163 33337 0 11

30 00:02:34 17703 19797 0 47

45 00:04:23 29535 7965 0 78
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Gridbase - map with obstacle -
simulation
Messages overview

Report 518 Ack 532 Nak 0

Count forward 294 meters: 104 Count alive 598

Count scan 14 Angular correction 38 Report Error 0

Maps overview

Tankerino report
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Explore map percentage

id time unknown explored obstacle not set percentage

10 00:00:08 20504 16931 64 1 45

16 00:00:16 11319 26156 25 0 69

27 00:00:31 5983 31463 53 1 83

66 00:01:12 973 36424 97 6 97
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Visited map percentage

ID Time visited not visited obstacle percentage

10 00:00:36 4286 33105 109 11

30 00:04:26 17851 19540 109 47

47 00:06:59 25781 11610 109 68
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eStar - empty map - simulation
Messages overview

Report 311 Ack 347 Nak 0

Count forward 163 meters: 57 Count alive 375

Count scan 36 Angular correction 10 Report Error 0

Maps overview

Tankerino report
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Explore map percentage

id time unknown explored obstacle not set percentage

10 00:00:06 16461 21039 0 0 56

28 00:00:25 11162 26290 0 48 70

58 00:00:51 3396 33843 0 261 90

346 00:04:58 401 34239 0 2860 91
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Visited map percentage

ID Time visited not visited obstacle percentage

10 00:00:31 2384 35116 0 6

30 00:01:39 11100 26400 0 29

50 00:02:49 20805 16695 0 55

70 00:03:58 29588 7912 0 78

86 00:04:55 36873 627 0 98
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eStar - map with obstacle - simulation
Messages overview

Report 315 Ack 349 Nak 0

Count forward 150 meters: 47 Count alive 378

Count scan 34 Angular correction 12 Report Error 0

Maps overview

Tankerino report
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Explore map percentage

id time unknown explored obstacle not set percentage

10 00:00:05 24952 12479 69 0 33

73 00:00:59 14339 22935 73 153 61

127 00:01:43 4114 32829 112 445 87

348 00:04:45 545 34430 23 2502 91
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Visited map percentage

ID Time visited not visited obstacle percentage

10 00:00:34 3122 34355 23 8

30 00:01:42 11418 26059 23 30

50 00:02:52 21863 15614 23 58

70 00:04:02 31444 6033 23 83

82 00:04:43 34630 2847 23 92
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Gridbase - map with obstacle - mower
Messages overview

Report 205 Ack 232 Nak 25

Count forward 102 meters: 31 Count alive 647

Count scan 19 Angular correction 29 Report Error 0

Maps overview

Tankerino report
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Explore map percentage

id time unknown explored obstacle not set percentage

4 00:00:38 19104 18299 94 3 48

13 00:02:05 13632 23687 141 40 63

26 00:03:47 5788 31323 224 165 83

214 00:26:23 1163 36025 88 224 96
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Visited map percentage

ID Time visited not visited obstacle percentage

10 00:03:54 2280 35132 88 6

30 00:12:16 8820 28592 88 23

41 00:22:38 12895 24517 88 34
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Gridbase - empty map - mower
Messages overview

Report 304 Ack 329 Nak 49

Count forward 178 meters: 63 Count alive 611

Count scan 19 Angular correction 51 Report Error 0

Maps overview

Tankerino report
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Explore map percentage

id time unknown explored obstacle not set percentage

2 00:00:18 16546 20926 22 6 55

6 00:01:02 11041 26395 26 38 70

36 00:05:21 3568 33818 11 103 90

316 00:36:02 704 36639 4 153 97
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Visited map percentage

ID Time visited not visited obstacle percentage

10 00:03:46 3610 33886 4 9

30 00:13:33 10971 26525 4 29

50 00:31:40 14160 23336 4 37
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